- 01. Neural Network and Deep Learning
- Week1
- Quiz
-
Week2
-
01-Binary Classification.mp4
-
02-Logistic Regression.mp4
-
03-Logistic Regression Cost Function.mp4
-
04-Gradient Descent.mp4
-
05-Derivatives.mp4
-
06-More Derivative Examples.mp4
-
07-Computation graph.mp4
-
08-Derivatives with a Computation Graph.mp4
-
09-Logistic Regression Gradient Descent.mp4
-
10-Gradient Descent on m Examples.mp4
-
11-Vectorization.mp4
-
12-More Vectorization Examples .mp4
-
13-Vectorizing Logistic Regression.mp4
-
14-Vectorizing Logistic Regression_s Gradient Output.mp4
-
15-Broadcasting in Python .mp4
-
16-A note on python numpy vectors.mp4
-
17-Quick tour of Jupyter-iPython Notebooks.mp4
-
18-Explanation of logistic regression cost function (optional).mp4
-
19-Pieter Abbeel interview.mp4
-
- Assignment
- images
- datasets
-
images
-
cat_in_iran.jpg
-
gargouille.jpg
-
image1.png
-
image2.png
-
la_defense.jpg
-
LogReg_kiank.png
-
my_image.jpg
-
my_image2.jpg
-
Logistic Regression with a Neural Network mindset v4 - Stanford.ipynb
-
Logistic Regression with a Neural Network mindset v4.ipynb
-
Logistic Regression with a Neural Network mindset v5.ipynb
-
Logistic_Regression_with_a_Neural_Network_mindset_v6a.ipynb
-
lr_utils.py
-
Programming Assignment FAQ _ Coursera.pdf
-
Clarification about Upcoming Gradient Descent Video _ Coursera.pdf
-
Clarification about Upcoming Logistic Regression Cost Function Video _ Coursera.pdf
-
Clarification of _dz_ _ Coursera.pdf
-
Copy of Clarification about Upcoming Logistic Regression Cost Function Video _ Coursera.pdf
-
Derivation of DL_dz (optional reading) _ Coursera.pdf
-
-
Week3
-
01-Neural Networks Overview.mp4
-
02-Neural Network Representation .mp4
-
03-Computing a Neural Network_s Output.mp4
-
04-Vectorizing across multiple examples.mp4
-
05-Explanation for Vectorized Implementation.mp4
-
06-Activation functions.mp4
-
07-Why do you need non-linear activation functions.mp4
-
08-Derivatives of activation functions.mp4
-
09-Gradient descent for Neural Networks.mp4
-
10-Backpropagation intuition (optional).mp4
-
11-Random Initialization.mp4
-
12-Ian Goodfellow interview.mp4
-
-
images
-
classification_kiank.png
-
grad_summary.png
-
sgd_bad.gif
-
sgd.gif
-
Planar data classification with one hidden layer v4.ipynb
-
Planar data classification with one hidden layer v5.ipynb
-
Planar_data_classification_with_onehidden_layer_v6a.ipynb
-
Planar_data_classification_with_onehidden_layer_v6b.ipynb
-
Planar_data_classification_with_onehidden_layer_v6c.ipynb
-
planar_utils.py
-
testCases_v2.py
-
Clarification about Upcoming Backpropagation intuition (optional) _ Coursera.pdf
-
Clarification_ Activation Function _ Coursera.pdf
-
FlowerModel.png
-
-
Week4
-
01-Deep L-layer neural network.mp4
-
02-Forward Propagation in a Deep Network.mp4
-
03-Getting your matrix dimensions right .mp4
-
04-Why deep representations.mp4
-
05-Building blocks of deep neural networks .mp4
-
06-Forward and Backward Propagation.mp4
-
07-Parameters vs Hyperparameters.mp4
-
08-What does this have to do with the brain.mp4
-
-
images
-
2layerNN.png
-
backpass.png
-
backprop_kiank.png
-
backprop.png
-
final outline.png
-
imvector.png
-
linearback_kiank.png
-
mn_backward.png
-
model_architecture_kiank.png
-
model_architecture2.png
-
n_model_backward.png
-
NlayerNN.png
-
nm_backward.png
-
relu.png
-
structure.png
-
testCases_v3.py
-
testCases_v4.py
-
testCases_v4a.py
-
-
datasets
-
test_catvnoncat.h5
-
train_catvnoncat.h5
-
Deep Neural Network - Application v3.ipynb
-
Deep Neural Network - Application v4.ipynb
-
Deep Neural Network - Application v5.ipynb
-
Deep Neural Network - Application v6.ipynb
-
Deep Neural Network - Application v7.ipynb
-
Deep Neural Network - Application v8.ipynb
-
dnn_app_utils_v2.py
-
dnn_app_utils_v3.py
-
-
images
-
2layerNN_kiank.png
-
imvector.png
-
imvectorkiank.png
-
LlayerNN_kiank.png
-
my_image.jpg
-
Clarification about Getting your matrix dimensions right video _ Coursera.pdf
-
Clarification about Upcoming Forward and Backward Propagation Video _ Coursera.pdf
-
Clarification about What does this have to do with the brain video _ Coursera.pdf
-
-
Week1
-
01-Train Dev Test sets.mp4
-
02-Bias Variance.mp4
-
03-Basic Recipe for Machine Learning .mp4
-
04-Regularization.mp4
-
05-Why regularization reduces overfitting.mp4
-
06-Dropout Regularization .mp4
-
07-Understanding Dropout.mp4
-
08-Other regularization methods.mp4
-
09-Normalizing inputs.mp4
-
10-Vanishing Exploding gradients.mp4
-
11-Weight Initialization for Deep Networks.mp4
-
12-Numerical approximation of gradients.mp4
-
13-Gradient checking.mp4
-
14-Gradient Checking Implementation Notes .mp4
-
15-Yoshua Bengio interview.mp4
-
- datasets
- images
-
images
-
1Dgrad_kiank.png
-
dictionary_to_vector.png
-
handbackward_kiank.png
-
handforward_kiank.png
-
NDgrad_kiank.png
-
testCases.py
-
Clarification about Upcoming Normalizing Inputs Video _ Coursera.pdf
-
Clarification about Upcoming Regularization Video _ Coursera.pdf
-
Clarification about Upcoming Understanding dropout Video _ Coursera.pdf
-
Practical aspects of deep learning _ Coursera.mhtml
-
-
Week2
-
01-Mini-batch gradient descent.mp4
-
02-Understanding mini-batch gradient descent.mp4
-
03-Exponentially weighted averages.mp4
-
04-Understanding exponentially weighted averages .mp4
-
05-Bias correction in exponentially weighted averages.mp4
-
06-Gradient descent with momentum.mp4
-
07-RMSprop.mp4
-
08-Adam optimization algorithm.mp4
-
09-Learning rate decay.mp4
-
10-The problem of local optima.mp4
-
11-Yuanqing Lin interview.mp4
-
- datasets
-
images
-
cost.jpg
-
kiank_minibatch.png
-
kiank_partition.png
-
kiank_sgd.png
-
kiank_shuffle.png
-
Momentum.png
-
opt_momentum.png
-
opt1.gif
-
opt2.gif
-
opt_utils_v1a.py
-
opt_utils.py
-
Optimization methods.ipynb
-
Optimization_methods_v1b.ipynb
-
testCases.py
-
Clarification about Learning Rate Decay Video _ Coursera.pdf
-
Clarification about Upcoming Adam Optimization Video _ Coursera.pdf
-
- Quiz
-
Week3
-
01-Tuning process.mp4
-
02-Using an appropriate scale to pick hyperparameters.mp4
-
03-Hyperparameters tuning in practice- Pandas vs. Caviar.mp4
-
04-Normalizing activations in a network.mp4
-
05-Fitting Batch Norm into a neural network .mp4
-
06-Why does Batch Norm work.mp4
-
07-Batch Norm at test time.mp4
-
08-Softmax Regression.mp4
-
09-Training a softmax classifier.mp4
-
10-Deep learning frameworks.mp4
-
11-TensorFlow.mp4
-
- datasets
-
images
-
hands.png
-
onehot.png
-
thumbs_up.jpg
-
improv_utils.py
-
Tensorflow Tutorial v1.ipynb
-
Tensorflow Tutorial v2.ipynb
-
Tensorflow Tutorial v3.ipynb
-
Tensorflow Tutorial v3a.ipynb
-
TensorFlow_Tutorial_v3b.ipynb
-
tf_utils.py
-
Clarifications about Upcoming Softmax Video _ Coursera.pdf
-
Note about TensorFlow 1 and TensorFlow 2 _ Coursera.pdf
-
- Quiz
-
Week1
-
01-Why ML Strategy.mp4
-
02-Orthogonalization.mp4
-
03-Single number evaluation metric.mp4
-
04-Satisficing and Optimizing metric.mp4
-
05-Train dev test distributions.mp4
-
06-Size of the dev and test sets.mp4
-
07-When to change dev test sets and metrics.mp4
-
08-Why human-level performance.mp4
-
09-Avoidable bias.mp4
-
10-Understanding human-level performance.mp4
-
11-Surpassing human-level performance.mp4
-
12-Improving your model performance.mp4
-
13-Andrej Karpathy interview.mp4
-
Machine Learning flight simulator _ Coursera.pdf
-
- Quiz
-
Week2
-
01-Carrying out error analysis.mp4
-
02-Cleaning up incorrectly labeled data.mp4
-
03-Build your first system quickly, then iterate .mp4
-
04-Training and testing on different distributions.mp4
-
05-Bias and Variance with mismatched data distributions.mp4
-
06-Addressing data mismatch.mp4
-
07-Transfer learning.mp4
-
08-Multi-task learning.mp4
-
09-What is end-to-end deep learning.mp4
-
10-Whether to use end-to-end deep learning.mp4
-
11-Ruslan Salakhutdinov interview.mp4
-
- Quiz
-
Week1
-
01-Computer Vision.mp4
-
02-Edge Detection Example.mp4
-
03-More Edge Detection.mp4
-
04-Padding.mp4
-
05-Strided Convolutions.mp4
-
06-Convolutions Over Volume.mp4
-
07-One Layer of a Convolutional Network.mp4
-
08-Simple Convolutional Network Example .mp4
-
09-Pooling Layers.mp4
-
10-CNN Example.mp4
-
11-Why Convolutions.mp4
-
12-Yann LeCun Interview.mp4
-
- datasets
- images
- Quiz
-
Week2
-
01-Why look at case studies.mp4
-
02-Classic Networks.mp4
-
03-ResNets.mp4
-
04-Why ResNets Work.mp4
-
05-Networks in Networks and 1x1 Convolutions.mp4
-
06-Inception Network Motivation.mp4
-
07-Inception Network.mp4
-
08-Using Open-Source Implementation.mp4
-
09-Transfer Learning.mp4
-
10-Data Augmentation.mp4
-
11-State of Computer Vision.mp4
-
- datasets
- images
- datasets
-
images
-
convblock_kiank.png
-
idblock2_kiank.png
-
idblock3_kiank.png
-
my_image.jpg
-
resnet_kiank.png
-
signs_data_kiank.png
-
skip_connection_kiank.png
-
vanishing_grad_kiank.png
-
model.png
-
Residual Networks - v1.ipynb
-
Residual Networks - v2.ipynb
-
Residual_Networks_v2a.ipynb
-
resnets_utils.py
-
Inception Network Motivation _CORRECTION_ _ Coursera.pdf
-
- Quiz
- Week3
- font
-
images
-
0011.jpg
-
0012.jpg
-
0013.jpg
-
0014.jpg
-
0015.jpg
-
0016.jpg
-
0017.jpg
-
0018.jpg
-
0019.jpg
-
0020.jpg
-
0021.jpg
-
0022.jpg
-
0023.jpg
-
0024.jpg
-
0025.jpg
-
0026.jpg
-
0027.jpg
-
0028.jpg
-
0029.jpg
-
0030.jpg
-
0031.jpg
-
0032.jpg
-
0033.jpg
-
0034.jpg
-
0035.jpg
-
0036.jpg
-
0037.jpg
-
0038.jpg
-
0039.jpg
-
0040.jpg
-
0041.jpg
-
0042.jpg
-
0043.jpg
-
0044.jpg
-
0045.jpg
-
0046.jpg
-
0047.jpg
-
0048.jpg
-
0049.jpg
-
0050.jpg
-
0051.jpg
-
0052.jpg
-
0053.jpg
-
0054.jpg
-
0055.jpg
-
0056.jpg
-
0057.jpg
-
0058.jpg
-
0059.jpg
-
0060.jpg
-
0061.jpg
-
0062.jpg
-
0063.jpg
-
0064.jpg
-
0065.jpg
-
0066.jpg
-
0067.jpg
-
0068.jpg
-
0069.jpg
-
0070.jpg
-
0071.jpg
-
0072.jpg
-
0073.jpg
-
0074.jpg
-
0075.jpg
-
0076.jpg
-
0077.jpg
-
0078.jpg
-
0079.jpg
-
0080.jpg
-
0081.jpg
-
0082.jpg
-
0083.jpg
-
0084.jpg
-
0085.jpg
-
0086.jpg
-
0087.jpg
-
0088.jpg
-
0089.jpg
-
0090.jpg
-
0091.jpg
-
0092.jpg
-
0093.jpg
-
0094.jpg
-
0095.jpg
-
0096.jpg
-
0097.jpg
-
0098.jpg
-
0099.jpg
-
0103.jpg
-
0104.jpg
-
0105.jpg
-
0106.jpg
-
0107.jpg
-
0108.jpg
-
0109.jpg
-
0110.jpg
-
0111.jpg
-
0112.jpg
-
0113.jpg
-
0114.jpg
-
0115.jpg
-
0116.jpg
-
0117.jpg
-
0118.jpg
-
0119.jpg
-
0120.jpg
-
giraffe.jpg
-
test.jpg
-
LICENSE
-
- nb_images
- out
- utils
- Quiz
-
Week4
-
01-What is face recognition.mp4
-
02-One Shot Learning.mp4
-
03-Siamese Network.mp4
-
04-Triplet Loss.mp4
-
05-Face Verification and Binary Classification .mp4
-
06-What is neural style transfer.mp4
-
07-What are deep ConvNets learning.mp4
-
08-Cost Function.mp4
-
09-Content Cost Function.mp4
-
10-Style Cost Function.mp4
-
11-1D and 3D Generalizations.mp4
-
- datasets
-
images
-
andrew.jpg
-
arnaud.jpg
-
benoit.jpg
-
bertrand.jpg
-
camera_0.jpg
-
camera_1.jpg
-
camera_2.jpg
-
camera_3.jpg
-
camera_4.jpg
-
camera_5.jpg
-
dan.jpg
-
danielle.png
-
distance_kiank.png
-
distance_matrix.png
-
f_x.png
-
felix.jpg
-
inception_block1a.png
-
kevin.jpg
-
kian.jpg
-
pixel_comparison.png
-
sebastiano.jpg
-
tian.jpg
-
triplet_comparison.png
-
younes.jpg
-
inception_blocks_v2.py
-
-
weights
-
bn1_b.csv
-
bn1_m.csv
-
bn1_v.csv
-
bn1_w.csv
-
bn2_b.csv
-
bn2_m.csv
-
bn2_v.csv
-
bn2_w.csv
-
bn3_b.csv
-
bn3_m.csv
-
bn3_v.csv
-
bn3_w.csv
-
conv1_b.csv
-
conv1_w.csv
-
conv2_b.csv
-
conv2_w.csv
-
conv3_b.csv
-
conv3_w.csv
-
dense_b.csv
-
dense_w.csv
-
inception_3a_1x1_bn_b.csv
-
inception_3a_1x1_bn_m.csv
-
inception_3a_1x1_bn_v.csv
-
inception_3a_1x1_bn_w.csv
-
inception_3a_1x1_conv_b.csv
-
inception_3a_1x1_conv_w.csv
-
inception_3a_3x3_bn1_b.csv
-
inception_3a_3x3_bn1_m.csv
-
inception_3a_3x3_bn1_v.csv
-
inception_3a_3x3_bn1_w.csv
-
inception_3a_3x3_bn2_b.csv
-
inception_3a_3x3_bn2_m.csv
-
inception_3a_3x3_bn2_v.csv
-
inception_3a_3x3_bn2_w.csv
-
inception_3a_3x3_conv1_b.csv
-
inception_3a_3x3_conv1_w.csv
-
inception_3a_3x3_conv2_b.csv
-
inception_3a_3x3_conv2_w.csv
-
inception_3a_5x5_bn1_b.csv
-
inception_3a_5x5_bn1_m.csv
-
inception_3a_5x5_bn1_v.csv
-
inception_3a_5x5_bn1_w.csv
-
inception_3a_5x5_bn2_b.csv
-
inception_3a_5x5_bn2_m.csv
-
inception_3a_5x5_bn2_v.csv
-
inception_3a_5x5_bn2_w.csv
-
inception_3a_5x5_conv1_b.csv
-
inception_3a_5x5_conv1_w.csv
-
inception_3a_5x5_conv2_b.csv
-
inception_3a_5x5_conv2_w.csv
-
inception_3a_pool_bn_b.csv
-
inception_3a_pool_bn_m.csv
-
inception_3a_pool_bn_v.csv
-
inception_3a_pool_bn_w.csv
-
inception_3a_pool_conv_b.csv
-
inception_3a_pool_conv_w.csv
-
inception_3b_1x1_bn_b.csv
-
inception_3b_1x1_bn_m.csv
-
inception_3b_1x1_bn_v.csv
-
inception_3b_1x1_bn_w.csv
-
inception_3b_1x1_conv_b.csv
-
inception_3b_1x1_conv_w.csv
-
inception_3b_3x3_bn1_b.csv
-
inception_3b_3x3_bn1_m.csv
-
inception_3b_3x3_bn1_v.csv
-
inception_3b_3x3_bn1_w.csv
-
inception_3b_3x3_bn2_b.csv
-
inception_3b_3x3_bn2_m.csv
-
inception_3b_3x3_bn2_v.csv
-
inception_3b_3x3_bn2_w.csv
-
inception_3b_3x3_conv1_b.csv
-
inception_3b_3x3_conv1_w.csv
-
inception_3b_3x3_conv2_b.csv
-
inception_3b_3x3_conv2_w.csv
-
inception_3b_5x5_bn1_b.csv
-
inception_3b_5x5_bn1_m.csv
-
inception_3b_5x5_bn1_v.csv
-
inception_3b_5x5_bn1_w.csv
-
inception_3b_5x5_bn2_b.csv
-
inception_3b_5x5_bn2_m.csv
-
inception_3b_5x5_bn2_v.csv
-
inception_3b_5x5_bn2_w.csv
-
inception_3b_5x5_conv1_b.csv
-
inception_3b_5x5_conv1_w.csv
-
inception_3b_5x5_conv2_b.csv
-
inception_3b_5x5_conv2_w.csv
-
inception_3b_pool_bn_b.csv
-
inception_3b_pool_bn_m.csv
-
inception_3b_pool_bn_v.csv
-
inception_3b_pool_bn_w.csv
-
inception_3b_pool_conv_b.csv
-
inception_3b_pool_conv_w.csv
-
inception_3c_3x3_bn1_b.csv
-
inception_3c_3x3_bn1_m.csv
-
inception_3c_3x3_bn1_v.csv
-
inception_3c_3x3_bn1_w.csv
-
inception_3c_3x3_bn2_b.csv
-
inception_3c_3x3_bn2_m.csv
-
inception_3c_3x3_bn2_v.csv
-
inception_3c_3x3_bn2_w.csv
-
inception_3c_3x3_conv1_b.csv
-
inception_3c_3x3_conv1_w.csv
-
inception_3c_3x3_conv2_b.csv
-
inception_3c_3x3_conv2_w.csv
-
inception_3c_5x5_bn1_b.csv
-
inception_3c_5x5_bn1_m.csv
-
inception_3c_5x5_bn1_v.csv
-
inception_3c_5x5_bn1_w.csv
-
inception_3c_5x5_bn2_b.csv
-
inception_3c_5x5_bn2_m.csv
-
inception_3c_5x5_bn2_v.csv
-
inception_3c_5x5_bn2_w.csv
-
inception_3c_5x5_conv1_b.csv
-
inception_3c_5x5_conv1_w.csv
-
inception_3c_5x5_conv2_b.csv
-
inception_3c_5x5_conv2_w.csv
-
inception_4a_1x1_bn_b.csv
-
inception_4a_1x1_bn_m.csv
-
inception_4a_1x1_bn_v.csv
-
inception_4a_1x1_bn_w.csv
-
inception_4a_1x1_conv_b.csv
-
inception_4a_1x1_conv_w.csv
-
inception_4a_3x3_bn1_b.csv
-
inception_4a_3x3_bn1_m.csv
-
inception_4a_3x3_bn1_v.csv
-
inception_4a_3x3_bn1_w.csv
-
inception_4a_3x3_bn2_b.csv
-
inception_4a_3x3_bn2_m.csv
-
inception_4a_3x3_bn2_v.csv
-
inception_4a_3x3_bn2_w.csv
-
inception_4a_3x3_conv1_b.csv
-
inception_4a_3x3_conv1_w.csv
-
inception_4a_3x3_conv2_b.csv
-
inception_4a_3x3_conv2_w.csv
-
inception_4a_5x5_bn1_b.csv
-
inception_4a_5x5_bn1_m.csv
-
inception_4a_5x5_bn1_v.csv
-
inception_4a_5x5_bn1_w.csv
-
inception_4a_5x5_bn2_b.csv
-
inception_4a_5x5_bn2_m.csv
-
inception_4a_5x5_bn2_v.csv
-
inception_4a_5x5_bn2_w.csv
-
inception_4a_5x5_conv1_b.csv
-
inception_4a_5x5_conv1_w.csv
-
inception_4a_5x5_conv2_b.csv
-
inception_4a_5x5_conv2_w.csv
-
inception_4a_pool_bn_b.csv
-
inception_4a_pool_bn_m.csv
-
inception_4a_pool_bn_v.csv
-
inception_4a_pool_bn_w.csv
-
inception_4a_pool_conv_b.csv
-
inception_4a_pool_conv_w.csv
-
inception_4e_3x3_bn1_b.csv
-
inception_4e_3x3_bn1_m.csv
-
inception_4e_3x3_bn1_v.csv
-
inception_4e_3x3_bn1_w.csv
-
inception_4e_3x3_bn2_b.csv
-
inception_4e_3x3_bn2_m.csv
-
inception_4e_3x3_bn2_v.csv
-
inception_4e_3x3_bn2_w.csv
-
inception_4e_3x3_conv1_b.csv
-
inception_4e_3x3_conv1_w.csv
-
inception_4e_3x3_conv2_b.csv
-
inception_4e_3x3_conv2_w.csv
-
inception_4e_5x5_bn1_b.csv
-
inception_4e_5x5_bn1_m.csv
-
inception_4e_5x5_bn1_v.csv
-
inception_4e_5x5_bn1_w.csv
-
inception_4e_5x5_bn2_b.csv
-
inception_4e_5x5_bn2_m.csv
-
inception_4e_5x5_bn2_v.csv
-
inception_4e_5x5_bn2_w.csv
-
inception_4e_5x5_conv1_b.csv
-
inception_4e_5x5_conv1_w.csv
-
inception_4e_5x5_conv2_b.csv
-
inception_4e_5x5_conv2_w.csv
-
inception_5a_1x1_bn_b.csv
-
inception_5a_1x1_bn_m.csv
-
inception_5a_1x1_bn_v.csv
-
inception_5a_1x1_bn_w.csv
-
inception_5a_1x1_conv_b.csv
-
inception_5a_1x1_conv_w.csv
-
inception_5a_3x3_bn1_b.csv
-
inception_5a_3x3_bn1_m.csv
-
inception_5a_3x3_bn1_v.csv
-
inception_5a_3x3_bn1_w.csv
-
inception_5a_3x3_bn2_b.csv
-
inception_5a_3x3_bn2_m.csv
-
inception_5a_3x3_bn2_v.csv
-
inception_5a_3x3_bn2_w.csv
-
inception_5a_3x3_conv1_b.csv
-
inception_5a_3x3_conv1_w.csv
-
inception_5a_3x3_conv2_b.csv
-
inception_5a_3x3_conv2_m.csv
-
inception_5a_3x3_conv2_v.csv
-
inception_5a_3x3_conv2_w.csv
-
inception_5a_pool_bn_b.csv
-
inception_5a_pool_bn_m.csv
-
inception_5a_pool_bn_v.csv
-
inception_5a_pool_bn_w.csv
-
inception_5a_pool_conv_b.csv
-
inception_5a_pool_conv_w.csv
-
inception_5b_1x1_bn_b.csv
-
inception_5b_1x1_bn_m.csv
-
inception_5b_1x1_bn_v.csv
-
inception_5b_1x1_bn_w.csv
-
inception_5b_1x1_conv_b.csv
-
inception_5b_1x1_conv_w.csv
-
inception_5b_3x3_bn1_b.csv
-
inception_5b_3x3_bn1_m.csv
-
inception_5b_3x3_bn1_v.csv
-
inception_5b_3x3_bn1_w.csv
-
inception_5b_3x3_bn2_b.csv
-
inception_5b_3x3_bn2_m.csv
-
inception_5b_3x3_bn2_v.csv
-
inception_5b_3x3_bn2_w.csv
-
inception_5b_3x3_conv1_b.csv
-
inception_5b_3x3_conv1_w.csv
-
inception_5b_3x3_conv2_b.csv
-
inception_5b_3x3_conv2_w.csv
-
inception_5b_pool_bn_b.csv
-
inception_5b_pool_bn_m.csv
-
inception_5b_pool_bn_v.csv
-
inception_5b_pool_bn_w.csv
-
inception_5b_pool_conv_b.csv
-
inception_5b_pool_conv_w.csv
-
-
images
-
camp-nou.jpg
-
cat.jpg
-
circle_abstract.png
-
claude-monet.jpg
-
content_plus_style.png
-
content.jpeg
-
content300.jpg
-
drop-of-water.jpg
-
gram.png
-
hidden_layers.png
-
louvre_generated.png
-
louvre_small.jpg
-
louvre.jpg
-
monet_800600.jpg
-
monet.jpg
-
NST_GM.png
-
NST_LOSS.png
-
pasargad_kashi.png
-
persian_cat_content.jpg
-
persian_cat.jpg
-
perspolis_vangogh.png
-
reshape_loss.png
-
result.png
-
sandstone.jpg
-
stone_style.jpg
-
style300.jpg
-
nst_utils.py
-
- output
- pretrained-model
- Quiz
-
Week1
-
01-Why sequence models.mp4
-
02-Notation.mp4
-
03-Recurrent Neural Network Model.mp4
-
04-Backpropagation through time.mp4
-
05-Different types of RNNs .mp4
-
06-Language model and sequence generation.mp4
-
07-Sampling novel sequences.mp4
-
08-Vanishing gradients with RNNs.mp4
-
10-Gated Recurrent Unit (GRU).mp4
-
11-Long Short Term Memory (LSTM).mp4
-
12-Bidirectional RNN.mp4
-
13-Deep RNNs.mp4
-
-
images
-
initial_state.png
-
LSTM_cell_backward_rev3a_5.png
-
LSTM_cell_backward_rev3a_c2.png
-
LSTM_figure4_v3a.png
-
LSTM_rnn.png
-
LSTM.png
-
rnn_backward_overview_3a_1.png
-
rnn_cell_backprop.png
-
rnn_cell_backward_3a_4.png
-
rnn_cell_backward_3a_c.png
-
rnn_forward_sequence_figure3_v3a.png
-
rnn_step_forward_figure2_v3a.png
-
rnn_step_forward.png
-
rnn.png
-
RNN(1).png
-
- images
- models
- data
- images
- output
- Quiz
- Week2
- data
- images
- images
- Quiz
-
Week3
-
01-Basic Models.mp4
-
02-Picking the most likely sentence.mp4
-
03-Beam Search.mp4
-
04-Refinements to Beam Search.mp4
-
05-Error analysis in beam search.mp4
-
06-Bleu Score (optional).mp4
-
07-Attention Model Intuition.mp4
-
08-Attention Model.mp4
-
09-Speech recognition.mp4
-
10-Trigger Word Detection.mp4
-
11-Conclusion and thank you.mp4
-
- images
- models
- audio_examples
- images
- activates
- backgrounds
- dev
- negatives
- XY_dev
- XY_train
- Quiz
Logistic Regression with a Neural Network mindset v5.ipynb
Views | |
---|---|
0 | Total Views |
0 | Members Views |
0 | Public Views |
Actions | |
---|---|
0 | Likes |
0 | Dislikes |
0 | Comments |
Share by mail
Please login to share this video by email.