- 1. A conversation with Andrew Ng
- 2. Functional APIs
- Lab
- 3. Using the Functional APIs
- 4. Creating a Multi-Output Architecture
- Lab
- 5. Siamese Network
- Lab
- Files
- 1. Custom loss functions
- Lab
- 2. Custom loss hyperparameters and classes
- 3. Constrastive Loss
- W2_Assignment
- 1. Custom lambda layers
- 2. Implementing Custom Layers
- 3. Activating Custom Layers
- W3_Assignment
- 1. Complex Architectures with Functional API
- 2. Using the Model class to simplify complex architectures
- 3. Implementing ResNet
- Custom Models - Assignment
-
4.0.0
-
cats_vs_dogs-train.tfrecord-00000-of-00008
-
cats_vs_dogs-train.tfrecord-00001-of-00008
-
cats_vs_dogs-train.tfrecord-00002-of-00008
-
cats_vs_dogs-train.tfrecord-00003-of-00008
-
cats_vs_dogs-train.tfrecord-00004-of-00008
-
cats_vs_dogs-train.tfrecord-00005-of-00008
-
cats_vs_dogs-train.tfrecord-00006-of-00008
-
cats_vs_dogs-train.tfrecord-00007-of-00008
-
dataset_info.json
-
image.image.json
-
utils.py
-
VGG.png
-
Custom Models - Quiz.pdf
-
- 3.0.1
- 1. Built-in Callbacks
- 2. Custom Callbacks
- Labs data
- 1. A conversation with Andrew Ng
- 2. Tensor Basics
- 3. Working with Tensors in Eager Mode
- 4. Gradient Tape
- Tensor and Gradient Tape - Assignment
- 1. Custom Training Loops
- 2. Custom Training with TensorFlow Datasets
- .ipynb_checkpoints
- data
- test_model
- variables
- 3.0.1
- 1. AutoGraph
- 2. Creating Graphs for Complex Code
- Files
- 3.0.0
- resnet_50_feature_vector
- variables
- 1. Overview of Distribution Strategies
- 2. Mirrored Strategy
- 3. Multiple GPU Mirrored Strategy
- 4. TPU Strategy
- 5. Other Distributed Strategies
- Files
- 2.1.1
- resnet_50_feature_vector
- variables
- 3.0.1
- 1. Concepts in Computer Vision
- 2. Transfer Learning
- 3. Advanced Transfer learning
- 4. Object Localization and Detection
- Graded Quiz
- 1. Object Detection
- 2. Object Detection in TensorFlow
- 3. Object Detection APIs
- 4. Retraining with the Object Detection API
- Graded Quiz
- 1. Image Segmentation Overview
- 2. U-Net
- 3. Instance Segmentation
- Graded Quiz
- 1. Intro to Visualization and Interpretation
- 2. Saliency
- 3. Gradients and Class Activation Maps
- 4. Improving a model with interpretation
- Graded Quiz
-
1. Style Transfer Intro
-
1.Welcome to Course 4.mp4
-
2.Style Transfer Intro.mp4
-
3.Style Transfer Conceptual Overview.mp4
-
4.Pre-Processing Inputs.mp4
-
5.Extracting Style and Content Features.mp4
-
6.Total Loss and Content Loss.mp4
-
7.Style Loss.mp4
-
8.Update the Generated Image.mp4
-
9. Optional - Gram Matrix.mp4
-
10.Optional - Einstein Notation.mp4
-
11.Optional - Einsum in Code.mp4
-
C4_W1_Lab_1_Neural_Style_Transfer.ipynb
-
- 2. Total Variation Loss
- 3. Fast Neural Style Transfer
- Graded Quiz
- 1. What are AutoEncoders
- 2. Deep AutoEncoders
- Graded Quiz
- 1. Variational AutoEncoders
- Graded Quiz
- 1. What are GANs
- 2. Deep GANs
- Graded Quiz
C1_W3_Lab_3_custom-layer-activation.ipynb
Views | |
---|---|
0 | Total Views |
0 | Members Views |
0 | Public Views |
Actions | |
---|---|
0 | Likes |
0 | Dislikes |
0 | Comments |
Share by mail
Please login to share this video by email.